2. Buat program untuk mikrokontroler STM32F103C8 di software STM32 CubeIDE.
3. Compile program dalam format hex, lalu upload ke dalam mikrokontroler.
4. Setelah program selesai di upload, jalankan simulasi rangkaian pada proteus.
Sistem ini menggunakan mikrokontroler STM32 untuk mengontrol tiga LED berdasarkan input dari dua sensor, yaitu sensor inframerah (IR) dan sensor sentuh (Touch). Pada awalnya, sistem melakukan inisialisasi dengan mengkonfigurasi pin GPIO yang digunakan untuk input dan output. Sensor IR dan sensor sentuh dikonfigurasi sebagai input tanpa pull-up atau pull-down, sementara LED dikonfigurasi sebagai output dengan mode push-pull.
Dalam loop utama, sistem terus membaca status dari kedua sensor. Jika sensor IR aktif (mendeteksi objek), maka LED biru akan menyala sesuai dengan status sensor. Begitu juga jika sensor sentuh aktif, LED hijau akan menyala. Selanjutnya, sistem memeriksa apakah kedua sensor tidak aktif secara bersamaan. Jika tidak ada objek yang terdeteksi oleh sensor IR dan sensor sentuh tidak ditekan, maka LED merah akan menyala sebagai indikator kondisi idle. Sebaliknya, jika salah satu sensor aktif, LED merah akan mati. Untuk menjaga kestabilan pembacaan sensor, sistem menambahkan jeda pendek (delay) sebesar 10 milidetik di setiap iterasi loop.
Dengan prinsip kerja ini, sistem mampu memberikan indikasi visual melalui LED berdasarkan status sensor, di mana LED biru dan hijau menyala sesuai dengan input sensor masing-masing, sedangkan LED merah berfungsi sebagai indikator saat tidak ada sensor yang aktif.
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2025 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
/* USER CODE BEGIN 2 */
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
uint8_t ir_status = HAL_GPIO_ReadPin(GPIOB, IR_Pin);
uint8_t touch_status = HAL_GPIO_ReadPin(GPIOB, TOUCH_Pin);
HAL_GPIO_WritePin(BLUE_GPIO_Port, BLUE_Pin, ir_status);
HAL_GPIO_WritePin(BLUE_GPIO_Port, GREEN_Pin, touch_status);
HAL_GPIO_WritePin(GPIOA, GREEN_Pin, touch_status);
// LED Merah menyala jika tidak ada sensor yang aktif
if (ir_status == GPIO_PIN_RESET && touch_status == GPIO_PIN_RESET) {
HAL_GPIO_WritePin(GPIOA, RED_Pin, GPIO_PIN_SET); // Nyalakan LED RED
} else {
HAL_GPIO_WritePin(GPIOA, RED_Pin, GPIO_PIN_RESET); // Matikan LED REDd
}
HAL_Delay(10); // Delay kecil untuk stabilisasi pembacaan sensor
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOD_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOB, BLUE_Pin|RED_Pin|GREEN_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin : IR_Pin */
GPIO_InitStruct.Pin = IR_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(IR_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : Blue_Pin Red_Pin Green_Pin */
GPIO_InitStruct.Pin = BLUE_Pin|RED_Pin|GREEN_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pin : Touch_Pin */
GPIO_InitStruct.Pin = TOUCH_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(TOUCH_GPIO_Port, &GPIO_InitStruct);
/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
Tidak ada komentar:
Posting Komentar